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Let ,1 , ..., ,n be compactly supported distributions in Lp(Rs) (0<p��). We say
that the shifts of ,1 , ..., ,n are Lp -stable if there exist two positive constants C1 and
C2 such that, for arbitrary sequences a1 , ..., an # lp(Zs),

C1 :

n

k=1

&ak& lp(Z s)�" :

n

k=1

:
: # Z s

,k( } &:) ak(:)"Lp (R s)�C2 :

n

k=1

&ak&lp (Z s) .

In this paper we prove that the shifts of ,1 , ..., ,n are Lp -stable if and only if,
for any ! # Rs, the sequences (,� k(!+2;?)); # Z s (k=1, ..., n) are linearly inde-
pendent, where ,� denotes the Fourier transform of ,. This extends the previous
results of Jia and Micchelli on a characterization of Lp -stability (1�p��) of the
shifts of a finite number of compactly supported functions to the case 0<p��.
� 1998 Academic Press
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1. INTRODUCTION

The concept of stability plays an important role in approximation theory
and wavelet analysis. This has been gradually recognized by mathematicians
working in these two areas. The purpose of this paper is to extend the previous
results of Jia and Micchelli [7,8] on a characterization of Lp -stability
(1�p��) of the shifts of a finite number of compactly supported func-
tions to the case 0<p��.

Let f be a complex-valued (Lebesgue) measurable function on Rs. For
0<p<�, we define

& f &p :=\|R s
| f (x)| p dx+

1�p

.
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For p=�, define & f &� to be the essential supremum of | f | on Rs. Let
Lp(Rs) denote the linear space of all functions f for which & f &p<�. When
1�p��, & }&p is a norm and, equipped with this norm, Lp(Rs) is a
Banach space. For 0<p<1, & }&p is not a norm, but it has the properties

&*f &p=|*| & f &p \* # C and f # Lp(Rs)

and

& f+ g&p�21�p(& f &p+&g&p) \f, g # Lp(Rs).

In other words, & }&p is a quasi-norm.
The Fourier transform of a function f # L1(Rs) is defined by

f� (!)=|
R s

f (x) e&ix } ! dx, ` # Rs,

where x } ! denotes the inner product of two vectors x and ! in Rs. The
domain of the Fourier transform can be naturally extended to include
compactly supported distributions.

Let a be a complex-valued sequence on Zs. For 0<p<�, we define

&a&p :=\ :
: # Z s

|a(:)| p+
1�p

.

For p=�, define &a&� to be the supremum of |a| on Zs. Let lp(Z
s) denote

the linear space of all sequences a for which &a&p<�. Clearly, & }&p is a
norm for 1�p��, and is a quasi-norm for 0<p<1.

Now let ,1 , ..., ,n be a finite number of compactly supported functions in
Lp(Rs)(0<p��). We say that the shifts of ,1 , ..., ,n are Lp -stable if there
exist two positive constants C1 and C2 such that, for arbitrary sequences
a1 , ..., an # lp(Z

s),

C1 :
n

k=1

&ak &p�" :
n

k=1

:
: # Z s

,k( } &:) ak(:)"p
�C2 :

n

k=1

&ak&p .

In [7, 8], Jia and Micchelli established the following characterization for
Lp -stability when 1�p��: The shifts of ,1 , ..., ,n are Lp -stable if and
only if, for any ! # Rs, the sequences (,� k(!+2;?)); # Z s (k=1, ..., n) are
linearly independent. A special case of Lp-stability was discussed by Meyer
in his book [9, p. 30].

The Lp spaces (0<p<1) occur frequently in approximation theory and
wavelet analysis. For instance, a characterization for functions with a given
degree of nonlinear wavelet approximation is possible only if Lp spaces
(0<p<1) are used (see [2, 3, 5]). Due to a lack of Lp -stability theory for
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p<1, local linear independence was used instead (see [1, 4] for discussions
on local linear independence). But the requirement for local linear independence
is too strong for most problems. Thus, it is desirable to find a characterization
for Lp -stability of the shifts of a finite number of functions for 0<p<1.
The following theorem provides the desired characterization.

Theorem 1. Let 8=[,1 , ..., ,n] be a finite collection of compactly
supported distributions lying in Lp(R

s)(0<p��). Then the shifts of ,1 , ..., ,n

are Lp-stable if and only if, for any ! # Rs, the sequences (,� k(!+2;?)); # Z s

(k=1, ..., n) are linearly independent.

In [8], a characterization for L2-stability was first established and then
the Ho� lder inequality was employed to extend the result to the case
1<p��. However, the proof for the case 0<p<1 is more involved. As
was pointed out by DeVore and Lorentz in [3, p. 368], this is at least in
part due to the fact that there are no nontrivial continuous linear func-
tionals on Lp , 0<p<1. Therefore, we take a different approach in this
paper. The main idea of our approach is to discretize the problem. By using
this approach we will prove Theorem 1 in Section 3 after a discussion on
discrete convolution of sequences in Section 2.

2. DISCRETE CONVOLUTION

In this section we investigate the problem of lp -stability (0<p��) for
sequences, which is of independent interest. The reader is referred to [6]
for a study of discrete convolution equations and other related results.

We denote by l(Zs) the linear space of all sequences on Zs, and by l0(Zs)
the linear space of all finitely supported sequences on Zs.

Given a # l(Zs), the formal Laurent series �: # Z s a(:) z: is called the
symbol of a and is denoted by a~ (z). If a # l1(Zs), then the symbol a~ is a
continuous function on the torus

Ts :=[(z1 , ..., zs) # Cs: |z1 |= } } } =|zs |=1].

If a # l0(Zs), then a~ is a Laurent polynomial.
For a, b # l(Zs), we define the convolution of a and b by

a V b(:) := :
; # Zs

a(:&;) b(;), : # Zs,

whenever the above series is absolutely convergent. For example, if $ is
the sequence given by $(:)=1 for :=0 and $(:)=0 for : # Zs"[0],
then a V $=a for all a # l(Zs). Evidently, for a # l0(Zs) and b # l(Zs), the
convolution a V b is well defined.
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Suppose a # lp(Zs) for some p, 1�p��, and b # l1(Zs). Then

&a V b&p�&a&p &b&1 , 1�p��. (2.1)

Suppose a, b # lp(Zs), where 0<p<1. Then

&a V b&p
p= :

: # Z
} :
; # Z

a(:&;) b(;)}
p

� :
: # Z

:
; # Z

|a(:&;)| p |b(;)| p=&a& p
p &b& p

p .

It follows that

&a V b&p�&a&p &b&p , 0<p<1. (2.2)

Let a be an element in l0(Zs) such that a~ (z){0 for all z # Ts. Set

c(:) :=
1

(2?)s |
[0, 2?) s

1
a~ (ei!)

e&i: } ! d!, : # Zs.

Then c~ (z) a~ (z)=1 for all z # Ts. Hence c V a=$. Moreover, the sequence c
decays exponentially fast; that is, there exist two constants C>0 and
* # (0, 1) such that |c(:)|�C* |:| for all : # Zs. In particular, c belongs to
lp(Zs) for all p # (0, �].

Now suppose gjk # l0(Zs), 1� j, k�n. For z # Ts, let G(z) be the n_n
matrix (g~ jk(z))1� j, k�n . If det G(z)>0 for all z # Ts, then there exist
exponentially decaying sequences hjk (1� j, k�n) such that the matrix
H(z) :=(h� jk(z))1� j, k�n is the inverse of G(z) for every z # Ts. To see this,
we choose sequences hjk such that

h� jk(z)=
Gkj (z)

det G(z)
, 1� j, k�n,

where Gkj (z) denotes the cofactor of g~ kj (z) in the matrix G(z). By the
comments made in the previous paragraph, each sequence hjk decays
exponentially fast. Clearly, H(z) is the inverse of G(z) for every z # Ts.

Theorem 2. Let a jk # l0(Zs) for j=1, ..., m and k=1, ..., n. If the matrix

A(z) :=(a~ jk(z))1� j�m, 1�k�n

has rank n for every z # Ts, then there exist two positive constants C1 and C2

such that, for arbitrary u1 , ..., un # lp(Zs),

C1 :
n

k=1

&uk &p� :
m

j=1
" :

n

k=1

ajk V uk" p
�C2 :

n

k=1

&uk&p . (2.3)
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Proof. The second inequality in (2.3) follows from (2.1) and (2.2)
immediately. To prove the first inequality in (2.3) we write

vj := :
n

k=1

ajk V uk , j=1, ..., m. (2.4)

For j=1, ..., m and k=1, ..., n, let bkj (:) be the complex conjugate of
ajk(&:), i.e.,

bkj (:)=a jk(&:), : # Zs.

Then b� kj (z)=a~ jk(z) for all z # Ts. Let

B(z) :=(b� kj (z))1�k�n, 1� j�m and G(z) :=B(z) A(z), z # Ts.

Since A(z) has rank n for every z # Ts, the n_n matrix G(z) is positive
definite for every z # Ts. Hence there exist exponentially decaying sequences
hjk ( j, k=1, ..., n) such that H(z) :=(h� jk(z))1� j, k�n is the inverse of G(z).
It follows that H(z) B(z) A(z)=I for all z # Ts, where I denotes the n_n
identity matrix. Consequently, if we set

crj := :
n

t=1

hrt V btj , r=1, ..., n; j=1, ..., m,

then

:
m

j=1

crj V ajk={$
0

for r=k,
for r{k.

This in connection with (2.4) yields

:
m

j=1

crj V vj= :
m

j=1

:
n

k=1

crj V ajk V uk=ur , r=1, ..., n.

Note that each sequence crj decays exponentially fast. Therefore, by (2.1)
and (2.2), there exists a constant C>0 such that

:
n

r=1

&ur&p�C :
m

j=1

&vj&p .

This proves the first inequality in (2.3). K
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3. Lp -STABILITY

This section is devoted to a proof of Theorem 1.
Let 8=[,1 , ..., ,n] be a finite collection of compactly supported func-

tions in Lp(Rs) (0<p��). Denote by S(8) the shift-invariant space
generated by 8. In other words,

S(8)={ :
n

k=1

,k( } &:) bk(:): b1 , ..., bn # l(Zs)= .

Since ,1 , ..., ,n are compactly supported, S(8)| [0, 1]s is finite dimensional.
Hence we can find functions �1 , ..., �m # Lp(Rs) with support in [0, 1]s

such that �j |[0, 1] s ( j=1, ..., m) form a basis for S(8)| [0, 1] s . For k=1, ..., n,
each ,k can be represented as

,k= :
m

j=1

:
; # Z s

a jk(;) � j ( } &;), (3.1)

where ajk # l0(Zs), j=1, ..., m; k=1, ..., n.
Now suppose u1 , ..., un # lp(Z

s) and

f = :
n

k=1

:
: # Z s

,k( } &:) uk(:).

By (3.1) we have

f = :
m

j=1

:
n

k=1

:
: # Z s

:
; # Z s

a jk(;) uk(:) �j ( } &:&;)= :
m

j=1

:
# # Zs

vj (#) �j ( } &#),

where

vj= :
n

k=1

ajk V uk , j=1, ..., m. (3.2)

We observe that f (x+:)=�m
j=1 vj (:) � j (x) for x # [0, 1)s and : # Zs.

Hence there exist two positive constants C1 and C2 such that

C1 \ :
m

j=1

|vj (:)| p+
1�p

�& f &Lp(:+[0, 1) s)�C2 \ :
m

j=1

|vj (:)| p+
1�p

\: # Zs.

Since & f & p
p=�: # Z & f & p

Lp(:+[0, 1) s)
it follows that

C1 \ :
m

j=1

&vj& p
p+

1�p

�& f &p�C2 \ :
m

j=1

&vj& p
p+

1�p

. (3.3)
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This in connection with (3.2) tells us that

& f &p�C3 :
n

k=1

&uk&p \u1 , ..., un # lp(Zs), (3.4)

where C3>0 is a constant independent of u1 , ..., un .
Suppose the Fourier transforms of ,1 , ..., ,n exist. Taking the Fourier

transforms of both sides of (3.1), we obtain

,� k(!)= :
m

j=1

a~ jk(e&i!) �� j (!), ! # Rs ; k=1, ..., n.

Thus, if the sequences (,� k(!+2?;)); # Z s (k=1, ..., n) are linearly independent
for every ! # Rs, then the matrix A(z) :=(a~ jk(z))1� j�m, 1�k�n has rank n
for every z # Ts. By Theorem 2, there exists a constant C4>0 such that

:
n

k=1

&uk &p�C4 :
m

j=1

&vj&p .

This together with (3.3) yields

:
n

k=1

&uk&p�C5 & f &p \u1 , ..., un # lp(Zs), (3.5)

where C5>0 is a constant independent of u1 , ..., un . The combination of
(3.4) and (3.5) proves the sufficient part of Theorem 1.

It remains to prove the necessity part of Theorem 1. Suppose that for
some ! # Rs the sequences (,� k(!+2?;)); # Z s (k=1, ..., n) are linearly
dependent. Then there exist complex numbers c1 , ..., cn , not all zero, such
that �n

k=1 ck,� k(!+2?;)=0 for all ; # Zs. By the Poisson summation
formula, it follows that

:
n

k=1

:
: # Z s

ck ei! } :,k( } &:)=0. (3.6)

Let ak(:) :=ckei! } :, : # Zs, k=1, ..., n. Then �n
k=1 �: # Z s ak(:) ,k( } &:)=0

but �n
k=1 &ak&�=�n

k=1 |ck |>0. Hence the shifts of ,1 , ..., ,n are not
L� -stable.

Concerning the case 0<p<�, for t>1 and k=1, ..., n, we set

ak, t(:) :={ck ei! } :

0
if |:|�t,
if |:|>t.
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Let ft :=�n
k=1 �: # Z s ak, t(:) ,k( } &:). Suppose ,1 , ..., ,n are supported in

[&N, N]s, where N is a positive integer. Then (3.6) implies

:
n

k=1

:
: # Z s

ak, t (:) ,k(x&:)=0

for x � E :=[&t&N, t+N]s"[&t+N, t&N]s.

In other words, the function ft is supported in E. Therefore, there exists a
constant C>0 independent of t such that & ft&p�Ct(s&1)�p. But �n

k=1 &ak, t &p

�ts�p �n
k=1 |ck |. Hence

lim
t � �

:
n

k=1

&ak, t&p�& ft&p=�.

This shows that the shifts of ,1 , ..., ,n are not Lp-stable. The proof of
Theorem 1 is complete. K

Remark. Theorem 1 applies to the situation where ,1 , ..., ,n are compactly
supported functions in the Hardy space Hp(R

s) (0<p<1), because a function
in Hp(Rs) is a tempered distribution and lies in Lp(Rs).

We recall from [9, p. 176] that the Hardy space Hp(Rs) (0<p�1)
consists of tempered distributions f which can be written as

f = :
�

k=1

*k�k ,

where ��
k=1 |*k | p<� and each �k is a p-atom. A function � on Rs is

called a p-atom if � is supported in a ball B of volume |B| such that

&�&��
1

|B|1�p and |
R s

�(x) x+ dx=0

for every multi-index + with |+|�s(1�p&1). Under these conditions the
series ��

k=1 *k �k converges in the sense of distributions.
For 0<p<1, there exist compactly supported functions in Hp(R

s)"L1(R
s).

The following is an example of a function in Hp(R)"L1(R). Let q>1 and let
Ik (k=1, 2, ...) be disjoint closed intervals such that |Ik |=1�kq and ��

k=1 Ik

is bounded. Let �k be a p-atom supported in Ik such that

&�k&�=kq�p and &�k&1�c &�k&� |Ik |,

where c is a positive constant independent of k. Let *k=1�kr, where
r=1+q(1�p&1). Then f =��

k=1 *k�k belongs to Hp(R) but f � L1(R).
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